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Abstract
A simple semiclassical approach, based on the investigation of anti-Stokes line
topology, is presented for calculating Regge poles for nonsingular (Thomas–
Fermi type) potentials, namely potentials with singularities at the origin weaker
than order −2. The anti-Stokes lines for Thomas–Fermi potentials have
a more complicated structure than those of singular potentials and require
careful application of complex analysis. The explicit solution of the Bohr–
Sommerfeld quantization condition is used to obtain approximate Regge poles.
We introduce and employ three hypotheses to obtain several terms of the Regge
pole approximation.

PACS numbers: 03.65.Nk, 34.50.−s, 02.30.Uu, 34.20.Cf

1. Introduction

Understanding the role played by dynamic scattering resonances in chemical reactions is
crucial in gaining insights into all chemical reactivity. Physical insights are provided by
the analysis that identifies complex angular momentum (Regge poles) resonances of the
S-matrix in the complex angular momentum (CAM) plane. The energy-dependent Regge-
pole positions, ln and the corresponding residues, rn where n = 0, 1, 2, . . ., are the key
quantities calculated in the CAM techniques [1]. The position of the Regge pole determines
the angular velocity and the angular lifetime of the system, while the residue defines the
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magnitude of the resonance contribution in the differential cross section (DCS). The main
attraction in the CAM methods is that the calculations are based on a rigorous definition of
resonances, namely as singularities of the S-matrix.

A recent upsurge in the theoretical investigations of Regge pole trajectories [1–8] (see
also [9]) and, most recently, residues [10] for singular scattering potentials, namely potentials
more singular than r−2 at the origin, has been inspired by developments in heavy-particle
collisions [1], chemical reactions and atom–diatom systems [11, 12], cluster physics and
small-angle electron DCSs using dispersion relations [13, 14]. The Thomas–Fermi (TF)
equation, a delicate nonlinear problem whose solution is determined by unusual boundary
conditions [15], is important because all neutral atoms can be described within the TF model
by a universal function, the TF function [16] and in nuclear physics in the context of nuclear
matter in neutron stars [17]. The importance of TF theory is its exactness in the large-Z
limit; consequently, it can be taken as one of the cornerstones of atomic physics [18]. Lieb
[18] has summarized what is known rigorously about TF and related theories, including the
question of whether the resultant equations have (unique) solutions. Essential mathematical
facts about the TF equation have been established [19]. In [20] the TF problem, considered as
a variational problem, is shown to be approximately modelled by a simple nonlinear equation
for a charge density. TF theory has also been utilized in the analysis of the stability of
nonrelativistic and relativistic matter [21, 22]. In [6], it was determined that certain physics
problems involving nonsingular potentials could also be investigated readily using the method
for singular potentials. Hence the present investigation.

In this paper we use the same anti-Stokes line (aSL) method as in the paper for singular
potentials [7]. However, nonsingular potentials (singularity at the origin weaker than order
−2) do not satisfy the two hypotheses introduced there. Below, we give assumptions which
seem reasonable in the case of TF potentials. It is worth mentioning that the results of this
paper can be extended to the case of arbitrary rational potentials. We also demonstrate that
the formal solution of the Bohr–Sommerfeld (BS) condition sometimes leads to an incorrect
answer, and we give a procedure for finding the region of applicability of the Bohr–Sommerfeld
condition for the Thomas–Fermi type potentials. The method of anti-Stokes lines topology
reveals and explains such phenomena as false Regge poles: these are solutions of the Bohr–
Sommerfeld equation but where the turning points (TPs) are not connected by an anti-Stokes
line (connection by an anti-Stokes line is a necessary condition in the application of the
Bohr–Sommerfeld condition). The explanation in terms of anti-Stokes lines topology is the
following: the connection by an anti-Stokes line of two turning points expands with decreasing
energy, and at some energy a triple connection (a connection of three turning points by one
anti-Stokes line) appears, and the assumption of the connection of a pair of turning points for
the BS equation becomes inapplicable. Comparison with results of direct integration confirms
that such solutions of the BS equation do not solve the Schrödinger equation and are false.

2. Theory

The Thomas–Fermi potential is defined by the function χ obeying the differential
equation [23]

d2χ(x)

dx2
= 1√

x
χ3/2(x) (1)

with the boundary conditions

χ(x) > 0 x > 0 (2)
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χ(0) = 1 (3)

χ(x) ∼ 144

x3
x → ∞. (4)

The dimensionless variable χ(x) is related to the effective central electrostatic TF potential
q(r) in the atom of charge Z through

q(r) = −Z

r
χ(x) (5)

with x = rZ1/3/α, α = (1/2)(3π/4)2/3 ≈ 0.885.
The Majorana solution, considered as a modification of equation (1), but completely

different from it, and the Padé approximant approach to the TF problem have been considered
recently [15, 24]. Sommerfeld [25] discovered an exact particular solution satisfying only the
condition given by equation (4). In this paper we employ a rational function approximation
to investigate the behaviour of the turning points, Regge poles and residues at high energy
for a specific class of TF potentials denoted by RTF, within the context of complex angular
momentum scattering. The RTF potentials give a good numerical approximation to the TF
potential defined by equation (5). We present a semiclassical approach for calculating Regge
poles for RTF potentials. Unlike the case of singular potentials considered in [7], dealing with
RTF potentials is extremely complicated due to the existence of several additional poles (three
in our particular case) of the potential which make the anti-Stokes line topology approach very
difficult to work with.

This paper is based on three assumptions: (1) the existence of two turning points of the
effective potential, responsible for the Regge poles; (2) the connection of these turning points
by an anti-Stokes line; and (3) the closeness of the other turning points to the singularities of
order one of the potential. These three hypotheses are natural for the RTF potentials and are
used to simplify the nonlinear BS equation. Note, that the second assumption is a necessary
condition for using the BS equation. Using these assumptions and the Bohr–Sommerfeld
condition we find, after simplifications, the first two terms of the series expansion of the Regge
poles in powers of 1/k (k2 is the energy). As we show below this series is not a very good
approximation and we replace it by another expansion, in which as small parameters we use
the distances between the semiclassical turning points and the poles of the potential of order
one. By the third hypothesis these distances are small and can be used as small parameters.

Here we consider the Schrödinger equation (in atomic units)

ψ ′′ + 2

(
E − l(l + 1)

2r2
− V (r)

)
ψ = 0 (6)

where l is complex and E real, with boundary conditions

ψ(0) = 0 (7)

ψ(r) ∼ e+i
√

2Er r → ∞. (8)

Since we plan to consider mostly fast decreasing potentials V , the asymptotic condition at
infinity has the standard exponential form. In the Coulomb case as is well known, we have
to add an extra logarithmic term. Nontrivial solutions exist for special values of l known as
Regge poles [1]. The curves l(E) in the complex plane are called Regge trajectories.

We consider the RTF potential

V (r) = −2Z

r(1 + aZ1/3r)(1 + bZ2/3r2)
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where Z is the nuclear charge. This form of the potential is an approximation to the solution
of the nonlinear diferential equation (1). The exact TF potential has the form of equation (5)
(in atomic units). Since the analytic properties of the function χ(x) are too complicated and,
additionally, the TF approach is an approximation itself, it seems reasonable to replace the
exact function χ(x) by its rational approximation. The approximation of the potential by RTF
above produces good analytic functions which can be extended to the complex plane. It is
similar to that introduced by Tietz [26], but is more convenient for our calculations (note, that
the Tietz potential can be considered in a similar way).

Consider equation (6) in the form

ψ ′′ +

(
k2 − l(l + 1)

r2
− 2V (r)

)
ψ = 0. (9)

Then all results for this equation can be applied to (6) by simple transformations. Our
investigation of Regge poles trajectories using the above approximate RTF potential V (r) in
equation (9) is more than motivational for the three main reasons: (1) the TF theory can be
used with an appropriate TF potential to predict reliably [27] when electrons in the p−, d−
and f − shells appear, corresponding to Z of 5, 21 and 58, respectively. (2) It is known that
when the number of electrons, N → ∞ the TF theory approaches quantum theory and Lieb
and collaborators have established that ETF

atom(λ, Z) = Z7/3ETF
atom(λ, 1), where N = λZ, with

0 � λ < 1 and ETF
atom is the ground-state energy of the atom; a similar relation can be written

for the density. (3) In [26] the approximate TF potential, similar to ours was used in the
Schrödinger equation to obtain the scattering length for low energy elastic electron scattering
by atoms. Furthermore we demonstrate that the anti-Stokes lines for the TF potentials have a
more complicated structure than that for singular potentials and require careful application of
complex analysis.

Let r1,2,3,4,5 be the semiclassical turning points of the effective potential Veff(r) =
V (r) + l(l + 1)/2r2. These satisfy the following equation:

S(ri, ln, k) = k2 − 2V (ri) − ln(ln + 1)

r2
i

= 0.

We denote by r1, r2 the turning points responsible for the Regge poles. Approximate Regge
poles can be found by numerical solution of the Bohr–Sommerfeld condition

π

(
n +

1

2

)
=

∫ r2

r1

√
S(r, ln, k) dr n = 0, 1, 2, . . . (10)

where the integration, using Newton’s method [28] is along the anti-Stokes line:
Im

∫ r2

r1

√
S(r, ln, k) dr = 0, connecting the turning points r1 and r2. Thus, the existence

of a connecting anti-Stokes line is a necessary condition for the calculation of a Regge pole.
Solving the nonlinear equation (10) is non-trivial. The usual way of dealing with it is to look
for solutions in the form of a series for large energies k2. Not surprisingly, this method can
perform rather badly (see section 3) for small energies. Our approximation formula for the
Regge poles is based on introducing other small parameters �ra , �rb± below.

2.1. Small parameters

Analysing the position of the turning points of the effective potential we discover that there
are always five generally distinct TPs. It is easy to show that for large energies three of the
TPs are close to the poles of the effective potential: − 1

aZ1/3 , ± i√
bZ1/3 . The other two (r1, r2),
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which correspond to the ‘closeness’ of the RTF potential to the Coulomb one, are close to the
origin. Consider an abstract form of the RTF potential

V (r) = C

r(1 + Ar)(1 + Br2)
.

Let r3 = − 1
A

+ �ra, r4,5 = ± i√
B

+ �rb±, where A = aZ1/3, B = bZ2/3, C = −2Z; and all
|�r| � 1. Then for �ra we have the equation

S(r3, l, k) = k2 − l(l + 1)

1/A2
+

−C(− 1
A

)
A�ra

(
1 + B

A2

) + CA3 A2 + 3B

(A2 + B)2
+ O(�ra) = 0.

(11)

Solving we obtain an expression for �ra:

�ra = − CA2

(A2 + B)
(
k2 − l(l + 1)A2 + CA3 A2+3B

(A2+B)2

) . (12)

Similarly, one can obtain approximations for �rb±:

�rb± = − C
√

B

2(
√

B ± iA)
(
k2 + l(l + 1)B ± i

4BC 3
√

B±5iA
(
√

B±iA)2

) .

These quantities are small for large values of k. This allows us to use them as small parameters
for the decomposition into a series the action integral in equation (8). Also it is easy to check
that r3 = − 1

A
+ �ra + O

(
�r3

a

)
, r4,5 = ± i√

B
+ �rb± + O

(
�r3

b±
)
.

2.2. Regge poles

The Bohr–Sommerfeld quantization condition can be written in the following form, which is
equivalent to the standard one but better fits our aim:

2π

(
n +

1

2

)
=

∫
�

√
S(r, ln, k) dr n = 0, 1, 2, . . . . (13)

Here the contour � must surround the anti-Stokes line connecting the points r1 and r2. Cauchy’s
theorem [29] allows us to transform the contour without changing the value of the integral.

Consider the analytic function
√

S(r, ln, k). It has a pole of order 1 at the point r = 0
and several branching points of order ± 1

2 :
(− 1

A

)
,
(± i√

B

)
, r1,2,3,4,5. In total there are precisely

eight branching points (such as 0 for
√

z). At infinity our function is analytic and tends
to +k as |r| → ∞. We now produce precisely four cuts (curves on the complex plane) to
obtain a well-defined analytic function in the domain excluding these cuts and the origin: (see
figure 1). The choice of the cuts is not essential (except the one connecting r1 and r2 along the
aSL) for our calculations. We can think of them as straight lines (especially for large energies).

Using Cauchy’s theorem we can replace our integral along � in (13) by the sum of three
integrals around the cuts and two residues at points 0 and ∞. This leaves the value of our
integral unchanged. In the case of singular potentials this construction was not applied because
we assumed the closeness of the turning points r1 and r2, which is not true for the case of
nonsingular potentials.∫

�

√
S(r, ln, k) dr =

∫
�3

√
S(r, ln, k) dr +

∫
�4

√
S(r, ln, k) dr +

∫
�5

√
S(r, ln, k) dr

+ 2π i resr→∞
√

S(r, ln, k) − 2π i resr=0

√
S(r, ln, k).
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–4

–2

2

4

Im(r)

–5 –4 –3 –2 –1 1
Re(r)

Figure 1. Typical positions of all turning points and singularities of a Thomas–Fermi type potential
as well as all cuts.

Let us calculate all the terms in this sum

2π i resr=0

√
S(r, ln, k) = −2π i

√
−l(l + 1) = 2π

√
l(l + 1)

2π i resr→∞
√

S(r, ln, k) =
{

π iC
k

if A = B = 0

0 otherwise.

Therefore, the quantization condition has the form

−2π

(
n +

1

2

)
= 2π

√
l(l + 1) +

π iC

k
δA,0δB,0 +

∫
�3∪�4∪�5

√
S(r, ln, k) dr

where δA,0 and δB,0 are the usual Kronecker deltas.
In the simple situation of the Coulomb potential q(r) = C

r
there are no cuts at all, we

have A = B = 0, and our formula immediately gives

−2π

(
n +

1

2

)
= 2π

√
l(l + 1) +

π iC

k
≈ 2π

(
l +

1

2

)
+

π iC

k

and hence

l = −n − 1 − iC

2k
= −n − 1 +

iZ

k
which is the exact formula for the Coulomb potential [4, 30].

We now deal with the contour integrals. By Cauchy’s theorem the integral over �3 can
be reduced to two integrals along a straight line connecting the zero at r3 to the pole − 1

A
.

We now use equation (11) and make the change of variable r = − 1
A

+ t�ra . Finally, we use
equation (12) to combine all the terms under the square root to obtain

S

(
− 1

A
+ t�ra, ln, k

)
= t − 1

t

−CA2

(A2 + B)�ra

+ O(�ra)
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and ∫
�3

√
S(r, ln, k) dr = ±2�ra

∫ 1

0

√
t − 1

t

−CA2

(A2 + B)�ra

+ O(�ra) dt

= ±π iA

√
−C�ra

(A2 + B)
+ O

(
�r5/2

a

)
.

Similarly

S

(
± i√

B
+ t�rb±, ln, k

)
= t − 1

t

−C
√

B�rb±
2(

√
B ± iA)

+ O(�rb±)

and ∫
�4,5

√
S(r, ln, k) dr = ±2�rb±

∫ 1

0

√
t − 1

t

−C
√

B�rb±
2(

√
B ± iA)

+ O(�rb±) dt

= ±π i

√
−C

√
B

2(
√

B ± iA)�rb±
+ O

(
�r

5/2
b±

)
.

So,

ln = −n − 1 ± iA

2

√
−C�ra

A2 + B
± i

2

√
−C

√
B�rb+

2(
√

B + iA)
± i

2

√
−C

√
B�rb−

2(
√

B − iA)
+ O

(
1

k5

)
. (14)

The choice of signs comes from comparing the results of the direct integration of the
Schrödinger equation or using the given asymptotics e+ikr as r → ∞. This choice of the
asymptotics determines a unique branch of the multivalued function by a standard procedure.
Thus all the signs in the previous equation should be taken as +, and we obtain

ln = −n − 1 +
iA

2

√
−C�ra

A2 + B
+

i

2

√
−C

√
B�rb+

2(
√

B + iA)
+

i

2

√
−C

√
B�rb−

2(
√

B − iA)
+ O

(
1

k5

)
. (15)

Using the expressions for �ra and �rb, we obtain the first three terms of the expansion
ln in powers of 1/k

ln = −n − 1 +
c1

k
+

c2

k3
+ c3 + O

(
1

k5

)
(16)

where the coefficients c1, c2, c3 can easily be obtained from equation (15), e.g.

c1 = − CA2i

2(A2 + B)
− C

√
B

4(A − i
√

B)
+

C
√

B

4(A + i
√

B)
= −Ci

2
= Zi (17)

c2 = − iC

4
(n(n + 1)(A2 − B) − CA) (18)

c3 = C2

8
(2n + 1)(A2 − B). (19)

Going back to the RTF potential with A = aZ1/3, B = bZ2/3 and C = −2Z, we obtain
the corrected ln

ln = −n − 1 +
Zi

k
+

iZ5/3(n(n + 1)(a2 − b) + 2aZ2/3)

2k3
+

Z8/3(2n + 1)(a2 − b)

2k4
+ O

(
1

k5

)
.

(20)

It is clear from this formula that at high energies the RP trajectories merge with the
trajectories of the Coulomb potential (a = b = 0).
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Im(r)

–15 –10 –5 0 5 10
Re(r)

Figure 2. Anti-Stokes line topology for the RTF potential V (r) = − 1
r(1+0.2r)(1+0.04r2)

for k = 2

and n = 5. The five points generating the Regge pole l5 = −6.019 884 954 + i0.267 807 0513 are
given in table 1.

Table 1. Five points generating the Regge pole I5 = −6.019 884 954 + i0.267 807 0513.

Real part Imaginary part

r1 −2.986 037 291 0.145 475 8971
r2 2.686 283 188 −0.136 926 2214
r3 −4.799 075 077 −0.010 926 043 24
r4 0.048 351 064 56 −4.951 326 218
r5 0.050 478 115 67 4.953 702 585

3. Results

Figure 1 shows the typical positions of all turning points and singularities of the potential, as
well as all cuts. There are four poles and five TPs of the RTF potential. Three of the TPs are
located next to the poles (each pole is connected to the closely located TP by a cut) and the
other two generate Regge poles (connected by a cut to each other). So there is a total of four
cuts.

Figure 2 shows the anti-Stokes line topology for the RTF potential with a = 0.2, b = 0.04
and Z = 1: V (r) = − 1

r(1+0.2r)(1+0.04r2)
for k = 2.0 and n = 5. The five points generating the

Regge pole l5 = −6.019 884 954 + i0.267 807 0513 are given in table 1. The points r1 and r2

are almost connected by an anti-Stokes line. The connection is not complete due to an error in
the calculation by the Newton method of solving the Bohr–Sommerfeld condition. The central
part of the picture is typical of a Coulomb potential. For large energies the RTF potential is
very similar to the Coulomb potential. This can be explained by the fact that the two turning
points generating the Regge pole are close to the origin and the other three singularities of the
potential do not affect the connection by an anti-Stokes line.
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–4

–2

0

2

4

Im(r)

Re (r)

–20 –10 0 10 20
. .

Figure 3. Anti-Stokes line topology for the RTF potential V (r) = − 1
r(1+0.2r)(1+0.04r2)

for

k = 0.8359 and n = 5. The five points generating the Regge pole l5 = −5.697 128 644 +
i0.343 059 6507 are given in table 2.

Table 2. Five points generating the Regge pole I5 = −5.697 1286 44 + i0.343 059 6507

Real part Imaginary part

r1 6.060 138 392 −0.427 908 6239
r2 −5.827 882 440 1.303 898 691
r3 −5.525 389 875 −0.901 629 3692
r4 0.135 956 4202 −4.850 630 477
r5 0.157 177 5032 4.876 269 779

Figure 3 shows the anti-Stokes line topology for the same RTF potential with k =
0.8359, l5 = −5.697 128 644 + i0.343 059 6507. Here three turning points are connected by
an anti-Stokes line. Such a triple connection signifies that: either we have to pick another
pair of turning points or choose another value n or both. This triple connection is a condition
which determines whether or not the Bohr–Sommerfeld equation is still valid for the chosen
pair of turning points. The initial choice of the turning points for large energies is easy since
the turning points responsible for the Regge poles tend to the origin when the energy becomes
huge. So the connection of these TPs by aSL is close to the origin too. With decreasing energy,
this aSL expands and at some value of the energy touches one of the other three turning points.
This is a signal that the formal solution of the BS equation is no longer applicable and we
have to change the pair of TPs in the integral in the BS condition equation (10) and possibly n
as well.

Figure 4 shows three partial Regge trajectories for the RTF potential V (r) =
− 20

r(1+0.027 144 176 17r)(1+7.368 062 997r2)
(Z = 10, a = 0.0126, b = 1.5874) with n = 5.

This figure demonstrates very good agreement among the results of direct integration of the
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−6.05 −6.00 −5.95 −5.90 −5.85 −5.80
Re(ln)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Im
(l

n
)

 Bohr−Sommerfeld
 Eq. (16)
 Schrodinger, Eq. (6)

Figure 4. Three partial Regge trajectories for the RTF potential V (r) =
− 20

r(1+ 0.027 144 176 17r)(1+7.368 062 997r2)
(Z = 10, a = 0.0126, b = 1.5874) with n = 5. One

of the partial trajectories (crosses) is calculated from solving the Bohr–Sommerfeld condition
(k = 10 through 150). Diamonds represent the results of direct integration of the Schrödinger
equation (k = 4.5 through 30) while dashes are the results obtained using equation (16)
(k = 20 through 150).

−9 −8 −7 −6 −5 −4 −3 −2 −1 0
0

0.5

1

1.5

2

2.5

3

Figure 5. Sequence of partial Regge trajectories for the RTF potential V (r) =
− 20

r(1+0.027 144 176 17r)(1+7.368 062 997r2)
(a = 0.0126, b = 1.5874, z = 10) with n varying from

0 to 7 and k varying from 4.5 to 30.

Schrödinger equation (diamonds), solving the BS equation (crosses), and using the formula
given by equation (16) (dashes) for high energies (k = 20 through to 150). Then, with
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decreasing energy, the RT goes to the right away from the predicted values. So the formal
solution of the BS equation is not valid and the pair of TPs and the number n have to be changed
in the BS condition, equation (10). Also, it is clear that the usual approach of decomposing
into a series in powers of 1/k requires more terms to give a good accuracy.

Figure 5 reveals partial Regge trajectories for the RTF potential of figure 4 as solutions of
the Schrödinger equation. As expected, most of them have negative almost integer real parts
for large energies. This corresponds to different integer n from 0 through 7 as k varies from
4.5 to 30 in the BS condition. For smaller energies some trajectories turn right and others
turn left. All of them tend to go to the real line as k approaches ∞. There are three unusual
trajectories which do not seem to be bounded as energies becomes infinitely large. These
curves and why the Regge trajectories turn right or left need further investigation.

4. Discussion and conclusion

In our investigation of Regge poles trajectories for the complicated nonsingular such as the
Thomas–Fermi type potentials we discovered a simple and powerful semiclassical method,
based on the investigation of anti-Stokes line topology. The interesting result has been found
that in contrast to the case of singular potentials, the anti-Stokes lines topology for the Thomas–
Fermi potentials is very complicated and requires a careful application of complex analysis.
For large energies three of the five turning points are close to the poles of the effective potential.
This permitted the introduction of the concept of small parameters for decomposing into a
series the action integral (Bohr–Sommerfeld quantization condition).

Using Cauchy’s theorem, we evaluated the resulting contour integrals to obtain an
approximate expression for the Regge poles, which with the appropriate choice of the
parameters of the effective potential reduces to the well-known result for the Coulomb
potential. We also discovered that the Bohr–Sommerfeld condition at low E can result in
a triple connection, implying the failure of our assumption of connectivity. We conclude by
noting that the Regge poles trajectories for other rational approximations of the Thomas–Fermi
potential can be investigated similarly to the present approach.
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